Lotus Docs has built-in support for KaTex. However, there are certain equation syntaxes which do not render well if at all without a lot of character escaping1 or alterations. The KaTex shortcode is suited to handle such cases.

For example:

  {{< katex >}}
$$
\begin{array} {lcl}
  L(p,w_i) &=& \dfrac{1}{N}\Sigma_{i=1}^N(\underbrace{f_r(x_2
  \rightarrow x_1
  \rightarrow x_0)G(x_1
  \longleftrightarrow x_2)f_r(x_3
  \rightarrow x_2
  \rightarrow x_1)}_{sample\, radiance\, evaluation\, in\, stage2}
  \\\\\\ &=&
  \prod_{i=3}^{k-1}(\underbrace{\dfrac{f_r(x_{i+1}
  \rightarrow x_i
  \rightarrow x_{i-1})G(x_i
  \longleftrightarrow x_{i-1})}{p_a(x_{i-1})}}_{stored\,in\,vertex\, during\,light\, path\, tracing\, in\, stage1})\dfrac{G(x_k
  \longleftrightarrow x_{k-1})L_e(x_k
  \rightarrow x_{k-1})}{p_a(x_{k-1})p_a(x_k)})
\end{array}
$$
{{< /katex >}}
  

renders as:

$$ \begin{array} {lcl} L(p,w_i) &=& \dfrac{1}{N}\Sigma_{i=1}^N(\underbrace{f_r(x_2 \rightarrow x_1 \rightarrow x_0)G(x_1 \longleftrightarrow x_2)f_r(x_3 \rightarrow x_2 \rightarrow x_1)}_{sample\, radiance\, evaluation\, in\, stage2} \\\\\\ &=& \prod_{i=3}^{k-1}(\underbrace{\dfrac{f_r(x_{i+1} \rightarrow x_i \rightarrow x_{i-1})G(x_i \longleftrightarrow x_{i-1})}{p_a(x_{i-1})}}_{stored\,in\,vertex\, during\,light\, path\, tracing\, in\, stage1})\dfrac{G(x_k \longleftrightarrow x_{k-1})L_e(x_k \rightarrow x_{k-1})}{p_a(x_{k-1})p_a(x_k)}) \end{array} $$

Last updated 26 Jul 2024, 13:46 +0800 . history